

Date Planned : / /	Daily Tutorial Sheet-1	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

1.	When ${\rm KMnO_4}$	acts as an	oxidant and	ultimately forms	$\left[\mathrm{MnO_4}\right]^{2-}$, $\mathrm{MnO_2}$, $\mathrm{Mn_2O_3}$	and Mn ²⁺ ,	then
	number of elect	trons transfer	red in each ca	se respectively is:		(20	002)

(A) 4, 3, 1, 5

(B) 1, 5, 3, 7

(C) 1, 3, 4, 5

(D) 3, 5, 7, 1

2. Which of the following is a redox reactions:

(2002)

(A) $NaCl + KNO_3 \longrightarrow NaNO_3 + KCl$

(B) $CaC_2O_4 + 2HCl \longrightarrow CaCl_2 + H_2C_2O_4$

(C) $Mg(OH)_2 + 2NH_4Cl \longrightarrow MgCl_2 + 2NH_4OH$

(D) $Zn + 2AgCN \longrightarrow 2Ag + Zn(CN)_2$

3. Which reaction is possible at anode?

(2002)

(A) $2Cr^{3+} + 7H_2O \longrightarrow Cr_2O_7^{2-} + 14H^+$

(B) $F_2 \longrightarrow 2F^-$

(C) $O_2 + 4H^+ \longrightarrow 2H_2O$

(D) None of these

4. The oxidation number of Cl in CaOCl_2 (bleaching powder) is:

(2002)

(A) zero, since it contains Cl_2

(B) −1, since it contains Cl⁻

(C) +1, since it contains ClO⁻

(D) +1 and -1, since it contains ClO⁻ and Cl⁻

5. The oxidation state of nickel in $K_4[Ni(CN)_4]$ is:

(2002)

(A) +1

B) +

(C) -1

(D) 0

6. What volume of hydrogen gas at $273 \, \text{K}$ and $1 \, \text{atm}$ pressure will be consumed in obtaining $21.6 \, \text{g}$ of elemental boron (atomic mass = 10.8) from the reduction of boron trichloride with hydrogen: (2003)

(A) 44.8L

 $22.4\,\mathrm{L}$

(C) 89.6L

(D) 67.2L

7. The oxidation state of Cr in $[Cr(NH_3)_4Cl_2]^+$ is:

(2005)

(A) +3

(B) +2

(B)

(C) +1

(D) 0

8. The oxidation state of chromium in the final product formed by the reaction between KI and acidified potassium dichromate solution is: (2005)

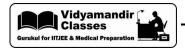
(A) +3

(B)

(C) +6

(D) +4

9. Which of the following chemical reaction depicts the oxidizing behavior of H₂SO₄?


(2006)

(A) $2PCl_5 + H_2SO_4 \longrightarrow 2POCl_3 + 2HCl + SO_2Cl_2$

(B) $2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2$

(C) $\operatorname{Ca(OH)}_2 + \operatorname{H}_2\operatorname{SO}_4 \longrightarrow \operatorname{CaSO}_4 + 2\operatorname{H}_2\operatorname{O}_4$

(D) $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$

10.

In the reaction : $2\,Al(s)+6\,HCl(aq)\rightarrow 2\,Al^{3+}(aq)+6\,Cl^{-}(aq)+3\,H_{2}(g)$

	(A)	6 liter $HCl(aq)$ is consumed for every $3LH_2(g)$ produced							
	(B)	33.6 liter H ₂ (§	g) is pro	oduced regardle	ess of ten	nperature and	pressure	for every mo	le of Al that
		reacts							
	(C)	$67.2 \mathrm{liter} \mathrm{H}_2$ (g	g) at STP	is produced for	r every m	ole of Al that r	eacts		
	(D)	11.2 liter H ₂ (g	g) at STP	is produced fo	r every m	ole of HCl(aq)	consumed	I	
11.	Amou	Amount of oxalic acid present in a solution can be determined by its titration with $KMnO_4$ solution in							
	the pr	resence of H ₂ SO	4. The t	itration gives u	nsatisfact	ory result whe	n carried o	out in the pre	sence of HCl
	becau	pecause HCl (2008)							
	(A)	Gets oxidized	by oxalio	e acid to chlorin	ne				
	(B)	Furnishes H ⁺	ions in	addition to tho	se from ox	xalic acid			
	(C)	Reduces perm	nanganat	e to Mn ²⁺					
	(D)	Oxidizes oxali	c acid to	carbon dioxide	and wate	er			
12.	presei	Amount of oxalic acid present in a solution can be determined by its titration with $KMnO_4$ solution in the presence of H_2SO_4 . The titration gives unsatisfactory result when carried out in the presence of HCl , because HCl : (2008)							
	(A)	gets oxidized	by oxalic	acid to chlorin	e				
	(B)	furnishes H ⁺	ions in a	addition to thos	se from ox	alic acid			
	(C)	reduces perm	anganate	e to Mn ²⁺					
	(D)	oxidizes oxali	e acid to	carbon dioxide	and wate	r			
13.	The m	The mass of potassium dichromate crystals required to oxidize $750\mathrm{cm}^3$ of $0.6\mathrm{M}$ Mohr's salt solution is							
	(mola	r mass = 392):							(2011)
	(A)	$0.49\mathrm{g}$	(B)	$0.45\mathrm{g}$	(C)	$22.05\mathrm{g}$	(D)	$2.2\mathrm{g}$	
14.		eous hydrocarb			stion, 0.7	2g of water	and 3.08g	g of CO ₂ . T	he empirical
	(A)	C_2H_4	(B)	C_3H_4	(C)	C_6H_6	(D)	C_7H_8	
	Oi	d 41 f-11	·4:	M0 ⁻ 0	02	2+	. 000	z o	(0010)
15.		der the following					+ 2yCO ₂ + ·	$\frac{-n_20}{2}$	(2013)
		alue of x, y and x			-				
	(A)	5, 2 and 16	(B)	2, 5 and 8	(C)	2, 5 and 16	(D)	5, 2 and 8	
16.	The vo	olume strength o	of 1 M H ₂	$_2O_2$ is: (Molar)	mass of 1	$H_2O_2 = 34 \text{g mo}$	ol^{-1})		(2019)
	(A)	16.8	(B)	11.35	(C)	22.4	(D)	5.6	
17.		e reaction of ox cing one molecu			te in acid	dic medium, t	he numbe	r of electrons	involved in (2019)
	(A)	10	(B)	1	(C)	5	(D)	2	

(2007)

18. The redox reaction among the following is: (2020)

- (A) reaction of $\rm\,H_2SO_4\,$ with NaOH
- **(B)** formatin of ozone from atmospheric oxygen in the presence of sunlight
- (C) combination of dinitrogen with dioxygen at 2000 K
- **(D)** reaction of [Co(H2O)6]Cl3 with AgNO3
- 19. $NaClO_3$ is used, even in spacecrafts, to product O_2 . The daily consumption of pure O_2 by a person is 492L at 1 atm, 300 K. How much amount of $NaClO_3$, in grams, is required to produce O_2 for the daily (2020) consumption of a person at 1 atm, 300 K?

 $NaClO_3(s) + Fe(s) \longrightarrow O_2(g) + NaCl(s) + FeO(s)$ R = 0.082 L atm mol⁻¹ K⁻¹

20. The compound that cannot act both as oxidising and reducing agent is: (2020)

- (A) HNO_2
- **(B)** H_2O_2
- (C) H_3PO_4
- **(D)** H_2SO_3
- Oxidation number of potassium in $\,{\rm K}_2{\rm O},\,{\rm K}_2{\rm O}_2\,$ and $\,{\rm KO}_2,\,$ respectively, is: 21.

(2020)

- (A)
- +1, +4 and +2 **(B)** +2, +1 and $+\frac{1}{2}$ **(C)** +1, +2 and +4 **(D)** +1, +1 and +1